Ordinary Subvarieties of Codimension One

نویسندگان

  • Ferruccio Orecchia
  • FERRUCCIO ORECCHIA
چکیده

In this paper we extend the properties of ordinary points of curves [10] to ordinary closed points of one-dimensional affine reduced schemes and then to ordinary subvarieties of codimension one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Points in Generic Position and Conductor of Varieties with Ordinary Multiple Subvarieties of Codimension One

We extend results of our previous papers, on ordinary multiple points of curves [9], and on the computation of their conductor [8], to ordinary multiple subvarieties of codimension one.

متن کامل

Adjoint Ideals along Closed Subvarieties of Higher Codimension

In this paper, we introduce a notion of adjoint ideal sheaves along closed subvarieties of higher codimension and prove a restriction property of our adjoint ideal sheaves using characteristic p methods.

متن کامل

Subcanonicity of Codimension Two Subvarieties

We prove that smooth subvarieties of codimension two in Grassmannians of lines of dimension at least six are rationally numerically subcanonical. We prove the same result for smooth quadrics of dimension at least six under some extra condition. The method is quite easy, and only uses Serre’s construction, Porteous formula and Hodge index theorem.

متن کامل

Degrees of High-dimensional Subvarieties of Determinantal Varieties

Let n = pab, where p is a prime, and g.c.d.(p, b) = 1. In Pn −1, let Xr be the variety defined by rank((xi,j)) ≤ n − r. We show that any subvariety of Xr of codimension less than par must have degree a multiple of p. We also show that the bounds on the codimension in our results are strict by exhibiting subvarieties of the appropriate codimension whose degrees are

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998